Feature Selection with Optimal Stacked Sparse Autoencoder for Data Mining

نویسندگان

چکیده

Data mining in the educational field can be used to optimize teaching and learning performance among students. The recently developed machine (ML) deep (DL) approaches utilized mine data effectively. This study proposes an Improved Sailfish Optimizer-based Feature Selection with Optimal Stacked Sparse Autoencoder (ISOFS-OSSAE) for pattern recognition sector. proposed ISOFS-OSSAE model aims derive decisions based on feature selection classification process. Moreover, involves design of ISOFS technique choose optimal subset features. swallow swarm optimization (SSO) SSAE is derived perform To showcase enhanced outcomes model, a wide range experiments were taken place benchmark dataset from University California Irvine (UCI) Machine Learning Repository. simulation results pointed out improved over recent state art interms different measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Unsupervised Feature Learning with Sparse AutoEncoder

Choosing the right input features for a particular machine learning algorithm is one of the deciding factors for a successful application but often a time consuming manual task. Unsupervised feature learning algorithms provide an alternative solution by automatically learning features; however, they are usually computationally intensive. In this project we explore different implementations of t...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Unsupervised feature selection for sparse data

Feature selection is a well-known problem in machine learning and pattern recognition. Many high-dimensional datasets are sparse, that is, many features have zero value. In some cases, we do not known the class label for some (or even all) patterns in the dataset, leading us to semi-supervised or unsupervised learning problems. For instance, in text classification with the bag-of-words (BoW) re...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.024764